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Deformation quantizations

Let X be a complex analytic manifold with a holomorphic symplectic form

ω ∈ Ω2(X). A deformation quantization on X is a sheaf (A, ⋆) of asso-

ciative C[[ℏ]]-algebras on X which is locally isomorphic to O[[ℏ]] as a sheaf

of C[[ℏ]] modules, such that A/ℏ is locally isomorphic to O as the sheaf of

algebras and

1

ℏ
(f ⋆ g − g ⋆ f) = ω(df, dg) mod ℏ.

EXAMPLE: Let X = C2n with the standart Darboux symplectic form.

Then the Weyl algebra

O[[ℏ]]/(zizj − zjzi − ℏω(dzi, dzj))

is a deformation quantization.
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Deformation quantizations

QUESTION: To classify all deformation quantizations on a given (X,ω).

Or at least to prove whether they exist or not.

IDEA: All symplectic forms locally look like the Darboux form. One can

quantize locally and then try to glue.

A naive attempt to glue will fail, unless the transition functions are affine.

In a coordinate-independent way:

THEOREM: (Bayen-Flato-Fronsdal-Lichnerowicz-Sternheimer) Suppose

that X admits a flat, torsion-free connection ∇ such that ∇ω = 0. The

sheaf T of parallel vector fields on X is a sheaf of (abelian) Lie algebras.

The form ω defines a central extension of T called the Heisenberg Lie

algebra h. Its universal enveloping algebra Uh, suitably completed, is a

deformation quantization of X.
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Fedosov’s idea

IDEA: (B. Fedosov) To make any torsion-free symplectic connection into

a flat one (on a different bundle).

The jet bundle of any manifold is equipped with a canonical flat con-

nection called the Grothendieck connection. A torsion-free symplectic

connection gives a way to construct a reduction isomorphism between the

jet bundle and the bundle ŜΩ1(X), the completed symmetric algebra of

the cotangent bundle.

This idea allowed Fedosov to completely classify deformation quantizations

of a smooth (C∞) symplectic manifold M . The answer is given by

H2
dR(M)[[ℏ]],

the power series in ℏ with coefficients in the second de Rham cohomology

of M .
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Nest-Tsygan-Bezrukavnikov-Kaledin

Building on the idea of Fedosov, Nest-Tsygan and Bezrukavnikov-Kaledin
were able to classify deformation quantizations for, respectively, smooth
complex analytic manifolds and smooth algebraic varieties. In both
cases, the answer is given by

H2(X,Ω≥1dR(X))[[ℏ]],

the hypercohomology of truncated de Rham complex of X. In the complex
analytic case this cohomology is isomorphic to the cohomology of the sheaf
of Hamiltonian vector fields. This answer holds for varieties for which the
natural map

H2(X,Ω≥1dR(X))−→ H2(X,ΩdR(X))

is an injection. This holds, for example, for Stein (resp., affine) manifolds
and for compact Kähler (resp., smooth projective) manifolds.
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Period map

All the theorems above are proved with the help of the so called period

map:

P : Quantizations−→ H2
dR(X)[[ℏ]].

In the C∞ context this is an isomorphism. Generally, it is only an embed-

ding. Its image is a formal analytical subset of H2
dR(X)[[ℏ]].

PROBLEM: To describe the image.

This thesis grew out of desire to solve this problem and to describe the

relation between the period map and the Rozansky-Witten invariants,

noticed by Nest-Tsygan and Bezrukavnikov-Kaledin.
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What is done in the thesis:

A Lie-theoretical description of the quantization problem: a curved L∞-

algebra QUA is constructed such that the set of deformation quantizations

on a complex manifold X is the Maurer-Cartan set associated to it.

The period map is interpreted as the map of L∞-algebras, thus reproving

the results of Fedosov-Nest-Tsygan.

Rozansky-Witten invariants are more related to the L∞-algebra QUA rather

then to the period map: the curvature element of it is given by the RW-

invariant associated to the formal linear combination of theta-graphs.

In the hyperKähler case, the formula for the period map is given, in terms

of covariant derivatives of the curvature tensor and the Green operator,

albeit complicated.

7



Two applications of homotopy transfer G. Papayanov

Lie theory

DEFINITION: A curved dg-Lie algebra is a graded Lie algebra L with

a differential d : L−→ L[1] and a curvature element h ∈ L2 such that

d2(x) = [h, x].

DEFINITION: The Chevalley-Eilenberg coalgebra C(L) of a curved

dg-Lie algebra L is a cofree cocommutative coalgebra Sym(L[1]) with the

differential

D(sv1 · . . . · svn) =
∑

(−1)ε(−1)|vi|s[vi, vj] · sv1 · . . . · svn+

+
∑
−(−1)|sv1|+...+|svk−1|sv1 · . . . · sdvk · . . . · svn+

+sh · sv1 · . . . · svn.
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Lie theory

DEFINITION: The adjoint Lie algebra TL of L is the dg-Lie algebra of

coderivations of C(L) with the differential DA = [D,A].

DEFINITION: The twist of L by a ∈ L1 is the curved dg-Lie algebra La

which is L as a graded Lie algebra, with the differential da(x) = d(x)+[a, x]

and the curvature ha = d(x) + 1
2[a, a] + h.

The coalgebras C(L) and C(La) are, in general, not isomorphic, but their

adjoint Lie algebras are, via the map eada:

eadaf(v1, . . . , vn) =
∑ 1

k!
f(a, . . . , a, v1, . . . vn).

DEFINITION: An L∞-map between two curved dg-Lie algebras is a

map F : C(L)−→ C(M). Its Taylor components are restrictions fi :

Symi(L[1])−→M [1] for i≥ 0.
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Profinite modules

DEFINITION: A topological k-module V is profinite if as it is isomorphic

to the inverse limit of finite dimensional vector spaces.

REMARK: The functor of continious linear functionals V 7→ V ∨ gives an

equivalence between the categories of profinite k-modules and k-modules.

The topological tensor product of a profinite module V and and a module

A is given by V ⊗̂A := Hom(V ∨, A). The topological tensor product of two

profinite modules V and W is given by (V ∨⊗W∨)∨. The symmetric algebra

Sym(V ∨) is isomorphic to the algebra of continuous symmetric polylinear

functionals on V .
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coLie theory

DEFINITION: A k-module V is a Lie coalgebra if V ∨ is a profinite Lie

algebra.

A Lie coalgebra c has a Chevalley-Eilenberg algebra C(c).

The algebra C(c) is isomorphic to the algebra of continuous antisymmetric

polylinear functionals on the profinite Lie algebra c∨.
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Maurer-Cartan set

DEFINITION: A Maurer-Cartan element in a curved dg-Lie algebra L

is an element x ∈ L1 such that

dx+
1

2
[x, x] + h = 0.

For the next definition, suppose that L is flat over C[[ℏ]], ℏ-adically com-
plete and has the property that [L,L] ⊂ ℏL. Consider the curved dg-Lie
algebra L⊗̂Ω1 := limnL/ℏn ⊗ C[t, dt].

DEFINITION: Two Maurer-Cartan elements x0, x1 are called homotopy
equivalent, if there exists a Maurer-Cartan element X(t) ∈ L⊗̂Ω1 such
that X(0) = x0 and X(1) = x1.

For an L∞ map F : C(L)−→ C(M) and a Maurer-Cartan element x ∈ L1,
the element

F (x) :=
∑ 1

n!
fn(x, . . . , x),

provided this series converges, is a Maurer-Cartan element of M . If
x ∼ y, then F (x) ∼ F (y).
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Maurer-Cartan set and deformations

The set of homotopy equivalence classes of a curved dg-Lie algebra L

will be denoted by π0MC(L). It is an unpointed set, possibly empty,

functorial with respect to L∞ maps.

EXAMPLE: The elements of π0MC(ℏTL[[ℏ]]) are ℏ-deformations of L:

curved dg-Lie algebras L over k[[ℏ]] together with an isomorphism L/ ≂
L[[ℏ]] of k-modules.

For a holomorphic symplectic manifold X we are going to describe a curved

L∞-algebra QUA(X) such that π0MC(QUA(X)) is the set of isomorphism

classes of deformation quantizations of X.
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Twisting cochains

Let L be a curved dg-Lie algebra and let A be a commutative unital

dg-algebra. Then the complex L ⊗ A inherits the curved dg-Lie algebra

structure.

DEFINITION: A Maurer-Cartan element α ∈ L ⊗ A is called a twisting

cochain from L to A.

THEOREM: (Quillen): In some cases a twisting cochain from L to A

is the same as the unital dg-algebra homomorphism

C∗(L)−→A

from the dg-algebra C∗(L) := Homc(C(L), k) dual to C(L) to A.
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Quillen’s theorem

THEOREM: (Quillen): If g is a profinite Lie algebra, then a Maurer-

Cartan element τ ∈ g⊗̂A is the same as the unital dg-algebra homomor-

phism

C∗(g)−→A

from the dg-algebra C∗(g) := Homc(C(g), k) topologically dual to C(g)

to A.

PROOF: Let us write τ =
∑

gi⊗̂ai. Then the corresponding homomor-

phism f maps u ∈ g∨ to f(u) =
∑

u(gi)ai. Note that the sum converges

since for any u ∈ g∨ only the finite number of elements u(gi) will be non-

zero. Let us write Du =
∑

u(1) ⊗ u(2). One then calculates that

f(Du) = (−
∑

u(1)(gi)ai)(−
∑

u(2)(gj)aj),

which is equal to∑
i,j

u(1)(gi)u(2)(gj)aiaj =
∑ 1

2
u([gi, gj])aiaj.
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Quillen theorem

For

Du =
∑

u(1) ⊗ u(2)

we have that

f(Du) = (−
∑

u(1)(gi)ai)(−
∑

u(2)(gj)aj) =

=
1

2

∑
u([gi, gj])aiaj.

On the other hand, df(u) = −
∑

u(gi)dai. The vanishing of the difference

fof these quantities for any u means that

1

2

∑
i,j

[gi, gj]⊗ aiaj +
∑
i

gi ⊗ dai = 0,

which is precisely the Maurer-Cartan equation for τ =
∑

gi ⊗ ai.
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Cones of Lie algebras

Let g be an (ungraded) Lie algebra. Its cone is the dg-algebra Co g which

is isomorphic to g[−1]⊕ g with the differential induced by the identity map

and the brackets induced by those in g.

A representation V of Co g is a complex together with operations iv, Lv for

v ∈ g satisfying the Cartan identities:

[iv, d] = Lv, [iv, iw] = 0, [Lv, Lw] = L[v,w], [iv, Lw] = i[v,w].

The subcomplex of Co g-invariant vectors in V is called the basic subcom-

plex and is denoted by Γ(V ).

EXAMPLE: Let P −→X is a principal G-bundle. Then Co g acts on Ω∗(P )

by vertical vector fields and

Γ(Ω∗(P )) = Ω∗(X).

17



Two applications of homotopy transfer G. Papayanov

Harish-Chandra pairs

DEFINITION: A Harish-Chandra pair is an dg-Lie algebra L, a Lie group

G and a dg-Lie algebra morphism ι : g−→ L such that the corresponding

representation of g on L integrates to a representation of G.

The Chevalley-Eilenberg algebra C∗(L) admits a Co g-action by derivations,

with

ivf(l1, . . . , ln) = f(v, l1, . . . , ln),

Lvf(l1, . . . , ln) = (ivd+ div)f(l1, . . . , ln) =

= ±f([ι(v), li], l1, . . . , ln)
±

∑
f(ι(v), [li, lj], l1, . . . , ln).
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Morphisms and connections

DEFINITION: An infinity-morphism between (L,G, ι) and (L′, G′, ι′) is

a smooth morphism of groups F : G−→G′, and an L∞-morphism f :

C∗(L′)−→ C∗(L) such that f intertwines the actions of Co g and Co g′.

Let A be a unital commutative dg-algebra with an action of Co g by deriva-

tions and let (L, g) be a Harish-Chandra pair with profinite L. A twisting

cochain α ∈ Hom1(L∨, A) is called Co g-equivariant if the corresponding

morphism

C∗(L)−→A

commutes with Co g-actions.

19



Two applications of homotopy transfer G. Papayanov

Harish-Chandra torsors

DEFINITION: Let X be a smooth manifold and let (G,L) be a Harish-

Chandra pair. A Harish-Chandra torsor over X is a

• G-torsor P −→X,

• Co g-equivariant twisting cochain α ∈ Hom1(L∨,Ω∗(P )).

The map C∗(L)−→Ω∗(P ) induces a morphism

Γ(C∗(L)) = C∗cont(L,G)−→Ω∗(X) = Γ(Ω∗(P )).

It is called the characteristic morphism, or the Gelfand-Fuks map.
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Harish-Chandra modules

DEFINITION: A profinite Harish-Chandra ∞-module over (G,L) is

• A profinite k-module V ,

• A differential on V ⊗̂C∗(L) = Homk(V
∨, C∗(L)) =: C∗(L, V ) making it

into a dg-module over C∗(L),

• An Co g-action on Homk(V
∨, C∗(L)) extending the action on C∗(L).

EXAMPLE: The adjoint dg-Lie algebra TL = Der(C∗(L)) = Hom(L∨, C∗(L)).

DEFINITION: The adjoint Lie algebra of a Harish-Chandra pair (G,L)

is T (G,L) := Γ(TL).
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Harish-Chandra deformations

DEFINITION: A deformation of a Harish-Chandra pair (G,L) is a pair

(G,L) with a morphism (G,L)−→ (G,L) such that

• L−→ L is a deformation of L

• G−→G is the identity

THEOREM: The set π0MC(ℏT (G,L)[[ℏ]]) is in bijection with the set of

isomorphism classes of deformations of (G,L).
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Descent

DEFINITION: Let (P, α : C∗(L)−→Ω∗(P )) be a (G,L)-torsor over X.

The functor from profinite (G,L) ∞-modules to Ω∗(X)-dg-modules given

by

V 7→ Γ(C∗(L, V )⊗̂C∗(L)Ω
∗(P )) =: desc(P,α)(V )

is called the descent functor.

EXAMPLE: Descent of the adjoint module is the basic complex of twisted

tensor product:

descL = Γ(L⊗̂αΩ
∗(P ))

The functor desc is symmetric monoidal, so it maps algebras in (G,L)-

modules into algebras in Ω∗(X)-modules.
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Precomposition action

Let (P, α : C∗(L)−→Ω∗(P )) be a (G,L)-torsor over X. We have the

extension of scalars map

T (G,L)−→ T (Γ(L⊗̂Ω∗(P ))

and the twisting isomorphism

eadα : T (Γ(L⊗̂Ω∗(P ))−→ Γ(L⊗̂αΩ
∗(P )).

Their composition

Prec : T (G,L)−→ Γ(L⊗̂αΩ
∗(P )) = desc(P,α)(L)

is called the precomposition action.

The precomposition action allows to construct deformations of desc(P,α)(L)

from deformations of (G,L).
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Liftings of torsors

Let (F, f) : (G,L)−→ (G′, L′) be a map of Harish-Chandra pairs. Let (P, α)
be a (G,L)-torsor over X. Then

(P ′ := P ×G G′, α′ := f(π∗α)),

where π : P −→ P ′ is the projection, is a (G′, L′)-torsor over X. We will call
the torsor (P ′, α′) the pushforward of (P, α) along (F, f), and we will say
that (P, α) is a lifting, or reduction of (P ′, α′) to (G,L).

Two liftings are called equivalent if there is a gauge isomorphism between
the corresponding torsors with connections that becomes identity after
taking pushforward.

THEOREM: Let µ ∈ ℏT (G,L)[[ℏ]] be a Maurer-Cartan element corre-
sponding to the deformation (G,L)−→ (G,L). Let desc(L) be the defor-
mation of desc(L) corresponding to the element Prec(µ). Then the set

π0MC(ℏdesc(L))

is in bijection with the set of equivalence classes of reductions of (P, α)
to (G,L).
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Liftings of torsors

The proof follows from an explicit description of desc(L), obtained from

the unwinding of all the definitions involved. If desc(L) is the basic sub-

complex of

(L⊗̂Ω∗(P ), d+ [α,−]),

then desc(L) is the basic subcomplex of

(L⊗̂Ω∗(P ), d+ [ι(α),−],
1

2
[ι(α), ι(α)]),

where ι is the embedding

L = L⊗ 1−→ L[[ℏ]] = L.
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Torsor of formal coordinate systems

Consider the algebra A := C[[t1, . . . , tn]]. Its automorphism group AutA is

naturally a projective limit of Lie groups — a prounipotent extension of

GL(n). The Lie algebra of AutA is the Lie algebra Der0A of vector fields

on a formal disk preserving the origin. It lies in the bigger Lie algebra of

all derivations DerA.

THEOREM: (Gelfand-Kazhdan) Any smooth complex manifold X is en-

dowed with a functorial (AutA,DerA)-torsor Xcoord.

This torsor is the torsor of the trivializations of the jet bundle of X.
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Jets

Let X be a complex manifold with transition functions gij. Taylor series

of gij determine an AutA-torsor Xcoord over X. The associated algebra

bundle

Xcoord ×AutA A−→X

is called the jet bundle J of X.

The jet bundle is endowed with a natural holomorphic flat connection ∇G,

called the Grothendieck connection. In local coordinates it is given by

d−
∑

dzi ⊗
∂

∂ti
=

∑
dzi ⊗ (

∂

∂zi
−

∂

∂ti
).

Its sheaf of flat sections is the structure sheaf OX.
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Jets

The jet construction could be performed in a coordinate-free language and

with coefficients. Let E be a vector bundle on X. Then

J(E) := lim
n

π1∗(OX×X/In+1 ⊗
π−12 OX

π−12 E),

where I is the ideal of the diagonal in X ×X. We have J(O) = J.

The connection ∇G in this construction is the de Rham differential along

the first factor.

The sheaf of flat sections of J(E) is the original sheaf E.
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Transitivity

The solder form of a connection ∇G is a form α ∈ Ω1
Xcoord

⊗̂DerA that in
local coordinates on Xcoord looks like∑

−
∂

∂ti
⊗ dzi +

∑
ι(ṽj)⊗ dvj,

where ṽj foirm a basis of the Lie algebra Der0A, dvj are the corresponding
dual 1-forms and ι is the embedding Der0A−→ DerA.

One can interpret α as a morphism of bundles α∨ : DerA−→ TXcoord
. From

the coordinate description one sees that α is an isomorphism.

DEFINITION: A (G,L)-Harish-Chandra torsor (P, α) over X is called
transitive if the morphism α∨ : L−→ TP is an isomorphism.

THEOREM: (Beilinson-Drinfeld) The torsor Xcoord is the unique, up to

a unique isomorphism transitive (AutA,DerA) torsor over X.

For a transitive (G,L)-torsor (P, α) over X, a point p ∈ P over x ∈ X

induces an isomorphism between Spf Ôx and Spf C[[(L/g)∨]].
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Geometric structures

(AutA,DerA)-equivariant bundles and operators on a formal disc descend,
with the help of Xcoord to natural bundles over X. For example, the formal
de Rham complex Ω∗(Spf A) descends to the jet bundle of the de Rham
complex Ω∗(X).

Suppose now that n is even and ω ∈ Ω2(Spf A) is the standard symplectic
form

ω̂ = dt1 ∧ dtn+1 + . . .+ dtn ∧ dt2n.

This form defines a Harish-Chandra subpair (Symp,Ham) of (AutA,DerA).

DEFINITION: A holomorphically symplectic structure on X is a re-
duction Xdarb of Xcoord to (Symp,Ham).

A closed non-degenerate 2-form ω ∈ Ω2(X) restricts to a formal neighbor-
hood of each point, defining a symplectic structure on each fiber of the jet
bundle. The sheaf of trivializations of J identifying this symplectic form
with the standard one is locally nonempty by the Darboux theorem. The
jet of the form ω is a flat section of the jet bundle of 2-forms and hence
the connection ∇G has a solder form with coefficients in Ham ⊂ DerA.
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Quantizations as geometric structures

Consider the Weyl algebra

W = C[[z1, . . . , z2n, ℏ]]/(zizj − zjzi = ℏδi,j+n).

The pair (AutW,DerW) is a Harish-Chandra pair with a morphism

(AutW,DerW)−→ (Symp,Ham)

given by reduction modulo ℏ.

THEOREM: (Bezrukavnikov-Kaledin-Nest-Tsygan) The set of isomor-

phism classes of deformation quantizations of (X,ω) is in bijection with

the set of equivalence classes of reductions of Xdarb to (AutW,DerW).
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Quantizations as geometric structures

THEOREM: (Bezrukavnikov-Kaledin-Nest-Tsygan) The set of isomor-

phism classes of deformation quantizations of (X,ω) is in bijection with

the set of equivalence classes of reductions of Xdarb to (AutW,DerW).

PROOF: In one direction, for a reduction Xquant the sheaf of flat sections

of descXquant
W is a deformation quantizations.

In the other direction, suppose that Oℏ is a deformation quantization of

X. Then

Jℏ := lim
n

π1∗(OX⊠̂Oℏ/I
n+1 ⊗

π−12 OX
π−12 Oℏ),

is a flat bundle of algebras such that each fiber is a quantization of (A, ω̂).
Its torsor of trivializations is locally nonempty since formally locally quan-

tizations are unique.
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Derivations of the Weyl algebra

On a formal disc every vector field preserving the symplectic form has a

Hamiltonian, which is defined up to a constant. In other words, we have

the following central extension of Lie algebras:

0−→ C−→A−→ Ham −→ 0.

From the PBW theorem, the Weyl algebra as a vector space is isomorphic

to A[[ℏ]]. The projection modulo ℏ is a Lie algebra map W −→A, where

the bracket on W is the algebraic commutator.

A Hochschild cohomology computation shows that almost every deriva-

tion of W is inner: concretely, there exist a central extension of Lie alge-

bras:

0−→ C[[ℏ]]−→W
a7→1

ℏ ada
−→ DerW −→ 0.
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Further reductions

Every vertical arrow in this commutative diagram is not quite a defor-

mation:

(1, k[[ℏ]]) −→ (AutW,W) −→ (AutW,DerW)y y y
(1, k) −→ (Symp,O) −→ (Symp,Ham),

PROBLEM: The groups AutW and Symp are different, so we did not

obtain a deformation of Harish-Chandra pairs yet.

SOLUTION: Both AutW and Symp are prounipotent extensions of Sp.

A reduction of Xcoord to (GL,DerA) is the same as the choice of isomor-

phism J ≂ ŜΩ1,0, or the splitting of the natural filtration on the jet bundle.

This is not always possible to do holomorphically, the obstruction being

the so-called Atiyah class, but always possible to do smoothly.
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Reduction of jets

Consider the graded algebra Ω∗,∗⊗̂ŜΩ1,0.

Let A0 be the ”fiberwise de Rham” derivation of tridegree (1,0,−1) acting

by

A0(1⊗ α) = α⊗ 1

and let K be the ”fiberwise Koszul” derivation

K(α⊗ 1) = 1⊗ α.

Their commutator [A,K] acts on Ωp,q⊗SrΩ1,0 by multiplication by (p+r).

Let ∇ := ∇1,0 + ∇0,1 be a smooth connection on Ω1,0, regarded as a

derivation of our graded algebra.

DEFINITION: A connection ∇ is called torsion-free if [∇, A0] = 0.
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Reduction of jets

THEOREM: Let A1 := ∇ be a torsion-free connection. Define the Ω∗,∗-
linear derivations Ai, i ≥ 2 of Ω∗,∗⊗̂ŜΩ1,0 by the formula

An+1(1⊗ α) := −
1

2(n+2)

n∑
i=1

K[Ai, An+i−1](1⊗ α).

Then D :=
∑

Ai squares to zero.

The operator D defines a flat connection on a bundle ŜΩ1,0. Its D0,1 part

determines a (non-standard) holomorphic structure on ŜΩ1,0, and D1,0 is

a holomorphic flat connection with respect to this holomorphic structure.

REMARK: If ∇ is the Levi-Civita connection of a Kähler metric, then

D1,0 = A0 +∇1,0.
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Reduction of jets

Let XJ−coord be the (GL,DerA)-torsor of trivializations of (ŜΩ1,0, D0,1).

Let X?−coord be the pushforward of XJ−coord to (AutA,DerA).

THEOREM: The torsor X?−coord is isomorphic to Xcoord. In particular,

the bundle (ŜΩ1,0, D0,1) is isomorphic to the jet bundle descXcoord
A and

D1,0 to the Grothendieck flat connection ∇G.

PROOF: X?−coord is transitive, due to locally D = ∇G+higher order terms.

THEOREM: For X Kähler, the complex (Ω0,∗, ∂) is isomorphic to the

complex

(Ω0,∗⊗̂ŜΩ1,0, D0,1) ∩Ker(D1,0)

via the map

α 7→ e−[K,∇1,0]α.

This map could be thought of as the Taylor decomposition of α in holo-

morphic variables.
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Reduction of symplectic jets

Suppose now X is Kähler and holomorphically symplectic. Then Ω1,0 and

consequently ŜΩ1,0 naturally reduces to the structure group Sp ⊂ GL.

Suppose, in addition, that ∇ preserves the form ω. Then the construction

of the differential D returns the Ham-valued flat connection instead of

just DerA-valued. Denote the corresponding (Sp,Ham)-torsor by XJ−darb.
Consider the following commutative diagram of Harish-Chandra pairs:

(AutA,DerA) ←− (Symp,Ham) ←− (AutW,DerW)x x x
(GL,DerA) ←− (Sp,Ham) ←− (Sp,DerW).

The set of equivalence classes of reductions of XJ−darb to (Sp,DerW)

is in bijection to the set of equivalence classes of reductions of Xdarb to

(AutW,DerW) and therefore to the set of isomorphism classes of quanti-

zations of (X,ω).

The map (Sp,DerW)−→ (Sp,Ham) is a deformation!
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The curved algebra QUA

Let MW ∈ T (Sp,Ham) be the Maurer-Cartan element defining the defor-
mation (Sp,DerW)−→ (Sp,Ham). Let Prec(MW) be the image of MW
in T (descXJ−darb Ham. Denote by descXJ−darb Ham the corresponding defor-
mation and by QUA the algebra ℏdescXJ−darb Ham.

THEOREM: The set π0MC(QUA) is in bijection with the set of isomor-
phism classes of quantizations.

Remind that for Kähler holomorphically symplectic X the algebra

descXJ−darb Ham = descXJ−darbA/C

is isomorphic to

Ω∗,∗⊗̂Ŝ≥1Ω1,0

with the differential

A0 +∇1,0 + ∂ + adR

where R is an element in

Hom(Ω1,0,Ω0,1⊗̂Ŝ≥2Ω1,0) = Ω0,1⊗̂Ham≥2 .
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The period map

Remind the diagram of central extensions and deformations

(1,C[[ℏ]]) −→ (Sp,W) −→ (Sp,DerW)y y y
(1,C) −→ (Sp,A) −→ (Sp,Ham).

One associates a cohomology class to a central extension, measuring an

obstruction to it being split:

c ∈ H2(Ham, Sp, k), c ∈ H2(DerW, Sp, k[[ℏ]]).

A cocycle is a dg-morphism from a polynomial algebra to the Chevalley-

Eilenber algebra, so we have two L∞-maps

c : (Sp,Ham)−→ (1,C[1]), c : (Sp,DerW)−→ (1,C[1][[ℏ]])

The period map, roughly speaking, is a descent of a deformation of the

morphism c into the morphism c. In our situation, it is more convenient to

describe deformations of ideals instead of all morphisms.
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Ideals

Let

0−→ V −→ L−→ h−→ 0

be a central extension of Lie algebras. Take a splitting of vector spaces

σ : h−→ L and consider the 2-cocycle c : Λ2h−→ V given by

c(a, b) = [σ(a), σ(b)]− σ([a, b]).

Consider the dg-Lie algebra h̃ which is

h̃ := h⊕ V ⊕ V [1]

as a complex, with the differential given by d(a, v, sw) = (0, w,0) and the

bracket

[(a, v, sw), (a′, v′, sw′)] = ([a, a′], c(a, a′),0).

LEMMA: Consider the maps i1(a) = (a,0,0) and i2(a, b) := (0,0, sc(a, b)).

Then (i1, i2) are Taylor components of an L∞-map h−→ h̃.
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DEFINITION: A subpair (G, I) ⊂ (G, h) is an cocentral ideal in an L∞-

algebra h if the Chevalley-Eilenberg differential vanishes on I⊥ ⊂ h∨ ⊂
C∗(h).

EXAMPLE: L is a cocentral ideal in h̃.

DEFINITION-THEOREM: Consider the dg-Lie subalgebra TI(G, h) of

T (G, h) consisting of derivations vanishing on I⊥. Then π0MC(TI(G, h)) is

in bijection with the set of isomorphism classes of deformations of (G, h)

with an ideal (G, I).

LEMMA: Let (P, α) be a (G, h)-torsor over X. Then desc I is an ideal in

desc h. Moreover, the precomposition maps TI(G, h) into Tdesc I(desc h).

REMARK: The cohomology of the dg-Lie algebra Th̃(G, h) is the relative

cohomology H(h, G, h̃).
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The period map

The existence of the diagram

(1,C[[ℏ]]) −→ (Sp,W) −→ (Sp,DerW)y y y
(1,C) −→ (Sp,A) −→ (Sp,Ham)

implies that the element MW lies in T(Sp,A)(Sp, ˜Ham).

Let X be a holomorphically symplectic manifold with a smooth connec-
tion preserving the symplectic form, and let XJ−darb be the correspond-
ing (Sp,Ham)-torsor. Define by XJ̃−darb its image under the morphism
(Sp,Ham)−→ (Sp, ˜Ham). Denote the deformation corresponding to ele-
ment

Prec(MW) ∈ TdescA(desc ˜Ham)

by ˜QUA. By construction, the algebra ˜QUA is endowed by a (linear) L∞-
map into the trivial deformation of an abelian L∞-algebra

Ω∗,∗[[ℏ]].
This is the L∞ enhancement of the period map.
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The period map

After this, the curved algebra ˜QUA could be safely forgotten, as the map

QUA−→ ˜QUA which in concrete terms look like

Ω∗,∗⊗̂DerW −→Ω∗,∗⊗̂D̃erW

with components

f1(β ⊗ v) = (β ⊗ v,0, sc(β ⊗ v, ι(α))),

f2(β ⊗ v, γ ⊗ w) = (0,0, sc(β ⊗ v, γ ⊗ w))

is a L∞ map which is quasiisomorphism modulo ℏ, and hence induces a

bijection π0MC(QUA)−→ π0MC( ˜QUA).

DEFINITION: The L∞-map QUA−→Ω∗,∗[1][[ℏ]] given by

P1(β ⊗ v) = c(β ⊗ v, ι(α)),

P2(β ⊗ v, γ ⊗ w) = c(β ⊗ v, γ ⊗ w)

is called the period map.
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How to classify quantizations

THEOREM: (Katzarkov-Kontsevich-Pantev) Suppose L and M are two

curved dg-Lie algebras over k[[ℏ]] that are topologically free as k[[ℏ]]-
modules. with curvature elements divisible by ℏ, and let f : C(L)−→ C(M)

be a morphism of dg-coalgebras. Its linear part induces a map of com-

plexes grℏ f1 : grℏL−→ grℏM . Suppose that M is ℏ-filteredly quasiisomor-

phic to an abelian Lie algebra and suppose that grℏ f1 induces an injection

on cohomology. Then L is homotopy abelian as well.

COROLLARY: In the situation above, π0MC(L) = H(grℏL).

The map H((Pℏ)1) could be identified with the standard embedding H1(X,Ham) =

H1(X,Ω≥1dR)−→ H2(X,Ω∗dR).

This reproves the theorem of Nest and Tsygan.
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Calculation of QUA

Let P be the bundle of Sp-frames on X and let A be the solder form in

Ω1(P )⊗̂Ham of the connection A0 + ∇1,0 + ∂ + adR. Then the algebra

QUA is the algebra

Γ(Ω∗(P )⊗̂DerW) = Ω∗(X)⊗̂DerWΩ1,0

with the differential

d+ adι(A)

and the curvature

H := dι(A) +
1

2
[ι(A), ι(A)].

Here ι : Ham = Ham⊗1−→ Ham[[ℏ]] = DerW is the embedding.

47



Two applications of homotopy transfer G. Papayanov

Moyal-Weyl deformation

The Moyal-Weyl bracket is better to describe for the central extensions.

Under the identification A[[ℏ]] ≂W, the commutator in W of two elements

f, g ∈ A is equal to

[f, g] = [e
1
2ℏπ(f ⊗ g)− e

1
2ℏπ(g ⊗ f)] = e

1
2ℏπ(f ∧ g).

Note that when one of the f or g is in the Sym≤2, the Moyal-Weyl

commutator is equal to the Poisson bracket (times ℏ). Indeed, [f, g] =

ℏ{f, g} plus summands involving third or higher derivatives of f and g.

COROLLARY: The algebra QUA is isomorphic to Ω∗(X)⊗̂DerW with

the differential

A0 +∇1,0 + ∂ + adι(R) .

In particular, the curvature is a (0,2)-form.
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One more time about characteristic classes

Let (P, α) be a (Sp,Ham)-torsor over X. Consider the dg-Lie algebra
TA(Sp,Ham).

LEMMA: H(TA(Sp,Ham)) = H(Ham, Sp,A) = H(Ham0, Sp), the relative
cohomology of the Lie algebra of Hamiltonian vector fields preserving a
point.

PROOF: As a (Ham, Sp)-module, A = HomU Ham0
(U Ham,C). The lemma

follows from Shapiro lemma.

DEFINITION: The characteristic map

TA(Ham, Sp) = C∗(Ham, Sp,A)−→ descXJ−coordA = Γ(Ω∗(P )⊗̂A)
in this situation is called the Rozansky-Witten map RW .

LEMMA: Consider the precomposition map

Prec : TA(Ham, Sp)−→ TdescA(descHam).

Then
1

n!
Prec(F )(α, α, . . . , α) = RW (F ).
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Rozansky-Witten classes as curvature

The algebra

QUA = Ω∗,∗(X)⊗̂Ŝ≥1Ω1,0[[ℏ]]

comes equipped with the morphism from the algebra

descA = Ω∗,∗(X)⊗̂ŜΩ1,0[[ℏ]]

with the differential given by a formula that looks almost the same:

A0 +∇1,0 + ∂ + ι(R) · .

The curvature of descA is the Rozansky-Witten invariant associated to

the element MW. The curvature of QUA is, correspondingly, its image.

REMARK: In the description of RW -invariants in terms of graphs, the

class RW (MW) corresponds to the graps

∑
k≥1

ℏ2k

(2k +1)!
Θ2k+1,

where Θ2k+1 is a graph with two vertices and 2k+1 edges between them.
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Smaller model for QUA

OBSERVATION: Suppose that (L∗,∗, d1,0+d0,1, h0,2) is a bigraded curved

dg-Lie algebra such that the curvature has the degree (0,2). Then the

space of d1,0-closed elements of bidegrees (0, ∗) together with the differ-

ential d0,1 is a curved dg-Lie subalgebra.

REMIND:

Ω0,∗(X)⊗̂ŜΩ1,0 ∩Ker(A0 +∇) = Ω0,∗

with the isomorphism given by e−[K,∇1,0].

COROLLARY: The complex (Ω0,∗(X)[[ℏ]], ∂) has the structure of a

curved dg-Lie algebra ℏ-filteredly quasiisomorphic to descA.

COROLLARY: The complex (Ω1,∗
∂−closed(X)[[ℏ]], ∂) has the structure of

a curved dg-Lie algebra ℏ-filteredly quasiisomorphic to QUA. We will call

this algebra QUF.
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Even smaller model for QUF

Suppose now that X is compact, Kähler and that its Levi-Civita connec-

tion preserves the holomorphically symplectic structure. In this case X is

automatically hyperKähler. The algebra QUF is

(Ω1,∗
∂−closed(X)[[ℏ]], ∂ + dℏ..., H).

THEOREM: (Homotopy transfer) There exists a curved dg-Lie algebra

stucture QUH on the complex

(H≥1,∗(X)[[ℏ]], d̃, H̃)

such that d̃ = 0 modulo ℏ together with an explicitly given ℏ-filtered
quasiisomorphism QUH−→QUF.

A posteriori, the operators d̃ and H̃ vanish.

As a corollary, π0MC(QUH) = H≥1,∗(X)[[ℏ]].
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Sum over trees

◦ ◦ H H ◦

dℏ [−,−] [−,−]

[−,−] dℏ

[−,−]

•

−∆−1∂∗ −∆−1∂∗

−∆−1∂∗ −∆−1∂∗

−∆−1∂∗

−∆−1∂∗
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conilpotent Lie coalgebras

An unrelated results concerns the cohomology algebras of conilpotent Lie

coalgebras.

DEFINITION: A coalgebra L is called conilpotent if its dual profinite Lie

algebra L∨ is a projective limit of finite dimensional nilpotent Lie algebras.

Alternativelty, it means that there exists an increasing ascending exhaustive

filtration by subspaces F∗L such that F0L = 0 and such that ∆(Fi) lies

inside
∑

p+q=i Fp ⊗ Fq ⊂ L⊗ L.

The tensor powers of conilpotent Lie coalgebra L inherit the filtration

and hence its Chevalley-Eilenberg algebra C = C(L) is then also endowed

with an ascending exhaustive filtration such that F0C = k = C0. The

Chevalley-Eilenberg differential preserves this filtration.
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Bar construction

Let A be an associative dg-algebra. Its bar-construction is a coassociative

dg-coalgebra BA which, as a coalgebra, is the tensor coalgebra generated

by A[1], and whose codifferential is the unique codderivation of the ten-

sor coalgebra whose corestriction to A[1] is given by the differential and

multiplication in A. Modulo signs, we have

dB(a1 ⊗ · · · ⊗ an) =
∑
±a1 ⊗ . . . dak · · · ⊗ an +

∑
±a1 ⊗ . . . aiai+1 · · · ⊗ an.

DEFINITION: An A∞-algebra A is a graded vector space with a square-

zero coderivation dBA on the coaugmented tensor coalgebra on A[1]. An

A∞-morphism is a dg-coalgebra morphism between Bar-constructions.
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Filtrations

For an A∞-algebra A the bar-construction BA is a filtered coalgebra. The

filtration is given by

FiBA :=
i⊕

k=0

(A[1])⊗k.

If an A∞-algebra A is determined by Taylor components (m1,m2, . . . ), then

grF BA is ⊕iA[1]⊗i with the differential m1. In particular, m2
1 = 0, and it

defines a structure of a complex on A.

Note that if f : BA−→BB is a morphism of dg-coalgebras, then it au-

tomatically preserves this filtration. If the Taylor components of f are

(f1, f2, . . . ), then grF f = f1. In particular, f1mA,1 = mB,1f1.

An A∞-morphism f : BA−→BB is called a quasiisomorphism if it is a

filtered quasiisomorphism of dg-coalgebras
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Minimal models

DEFINITION: An A∞-algebra A is called minimal if grF BA has vanishing

differential.

THEOREM: For any A∞-algebra A there exists a unique up to A∞-

isomorphism minimal A∞-algebra H quasiisomorphic to A.
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1-generatedness

Let (A,m2,m3, . . . ) be a minimal A∞-algebra. We are interested in the

cohomology of its bar-complex H(BA). As BA is a filtered (by the tensor

filtration) complex, its cohomology H(BA) inherit the filtration. That is,

F kH(BA) are classes that could be represented by cocycles that lie in

F kBA.

DEFINITION: A minimal A∞-algebra A is called 1-generated if it is

positively graded and F1Hj(BA) = 0 for j ≥ 1.

LEMMA: A positively graded A∞ algebra A is 1-generated if and only if

any element x ∈ Ak can be expressed as a linear combination of iterated

compositions of maps of the form Id⊗i⊗mj ⊗ Id⊗k applied to elements in

A⊗n.
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Proof of the lemma

Induction on n.

...

A1 ⊗A1 ⊗A1 ...

A1 ⊗A1 A1 ⊗A2 ⊕ ... ...

A1 A2 A3 ...

m2 m2

m3

m4
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Bar-Cobar vanishing

LEMMA: or a conilpotent Lie coalgebra L, the cohomology of BC>0(L)

vanishes in positive degrees. The coalgebra H0(BC>0(L)) is isomorphic to

U(L), the conilpotent coenveloping coalgebra of L.

PROOF: We have two naturally defined filtrations on BC>0(L). The

“stupid” filtration on C>0(L) given by Gk = ⊕i≥kC
i(L) extends to a filtra-

tion on BC>0(L), which we will denote by G. The filtration induced from

the conilpotent filtration on L will be denoted by N . The filtration G is

descending and non-complete, the filtration N is ascending and exhaustive.

Consider the complex grN BC>0(L). The filtration G induces a filtration

on it, which we will also denote by G. An important fact is that G is

finite on each Ni/Ni−1. Consider now the complex grG grN BC>0(L). We

want to show that its higher cohomology vanish. From finiteness of F

and exhaustiveness of N it will follow that higher cohomology of BC>0(L)

would vanish as well.
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Bar-Cobar vanishing

...

C1 ⊗ C1 ⊗ C1 ...

C1 ⊗ C1 C1 ⊗ C2 ⊕ ... ...

C1 C2 C3 ...
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Bar-Cobar vanishing

...

S3C1 ...

S2C1 0 ...

C1 0 0 ...

COROLLARY: Let L be a conilpotent Lie coalgebra. Let H(L) be a

minimal A∞-algebra quasiisomorphic to C(L). Then H is 1-generated.
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THANK YOU FOR YOUR ATTENTION!
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